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Friction and Deformation of Nylon. 11. Theoretical 

N. ADAMS,* British Rayon Research Association, Manchester, England 

1. INTRODUCTION 

The adhesion theory of friction interpret,s the friction between two bodies 
as the force required to shear their interface. This force is taken to be the 
product of the area of true contact between the bodies and its specific shear 
strength ST. Usually, for simplicity, ST is assumed to be constant but 
the possibility that it can be pressuredependent has also been considered 
and molecular theories have been advanced which predict this, e.g., those 
of Deryaguin' and Kraghelsky.* 

Theories of the friction of rough elastic bodies are therefore primarily 
methods of estimating the load dependence of the true contact area between 
their surfaces. The basic problem here is the representation of the rough- 
ness of the bodies in a form which makes this estimation possible and which 
is a plausible model of a real surface. 

The difficulty in performing precise friction measurements on highly 
elastic materials and in measuring sufficient parameters to specify their 
surfaces has made the possibility of a crucial test of such theories seem re- 
mote. In fact, it has not been necessary to assume pressure dependence 
of ST to interpret available data on these materials, so that this parameter 
of the theories has remained in reserve. 

In the preceding paper the friction F and the apparent contact area A 
of nylon hemispheres sliding on glass were shown to be related to the load 
W by equations of the form F = aW" and A = /3W" where the values of 
n and m were 0.781 and 0.708, respectively. In this paper it is shown t,hat 
the size of n - m implies that a pressure dependence of ST is necessary. 
In  order to do this the published friction theories of rough elastic bodies are 
outlined to demonstrate their inability to explain the observed value of 
n - m, assuming a constant value of S,. This limitation is shown not 
to be removed by the assumption that under the pressures existing within 
the apparent contact area some asperities are completely flattened, without 
the simultaneous assumption of a pressuredependent value of ST. This 
last assumption is therefore considered to be essential. 

A theoretical treatment of the effect of complete flattening of some of the 
asperities within the contact leads to the prediction of a change of slope of 
log F plotted against log W at  a critical load, which may be estimated from 

* Present address: A.E.R.E., Harwell, England. 
2105 
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practicable roughness measurements. Comparison with experiment is 
satisfactory. 

2. THEORIES OF THE FRICTION OF ROUGH ELASTIC BODIES 
Published treatments, e.g., those of Lodge and Howell,s Rubenstein,4 

and Archard,6s6 have assumed that the roughness is expressible by asperities 
in the form of hemispheres or hemispherical caps whose lateral dimensions 
are small compared with those of the apparent contact area, and they have 
calculated the true contact area from the elastic deformation of the nu- 
merous asperities within that area. All treatments have assumed that the 
same deformation law is obeyed by all the asperities within the apparent 
contact area at  all loads. The choice of hemispherical shape for the 
asperities is justified by the geometrical theorem that over sufficiently small 
regions any convex surface can be described by two principal curvatures 
and the fact that, a t  least as far as the load dependence of contact area is 
concerned, no loss of generality is involved in assuming the curvatures to 
be equal. On physical grounds one might expect surface forces in poly- 
mers prepared from solutions or melts or by polishing to cause any asperities 
to have a rounded form. 

For simplicity we will only consider the contact between one surface 
covered with asperities and one rigid, smooth, plane surface. This re- 
sembles the conditions in the experiments on the friction of nylon speci- 
mens on a polished glass plate. 

The theoretical treatments differ in the assumed arrangement of the 
asperities. Lodge and Howell, and Rubenstein, assume the asperities to 
be of constant height so that their tips lie in a surface similar to that of the 
substrate; e.g., on a plane substrate the.tips of all asperities are coplanar. 
Archard, on the other hand, assumes the asperities to be of various heights 
so that the number of asperities intersected by a surface of uniform separa- 
tion from the substrate will increase as this separation decreases. 

The methods of calculating the true contact area also differ. Lodge and 
Howell assume the load to be shared among the asperities within the a p  
parent contact area so that the load on each asperity is proportional to 
the area of its base multiplied by the pressure that would be observed at  its 
corresponding position if the surfaces were both smooth. In  effect, the 
load on an asperity is determined by the deformation of the substrate. 
The total true contact area obtained by summing the contact areas of the 
individual asperities under these loads is then related to the total load. 

Archard assumes that the substrate on which the asperities are based 
is rigid so that when the contacting bodies approach by a distance x, 
from being just touching, the tips of all asperities which were less than z 
below the highest asperity will be partially flattened. It is thence possible 
to calculate, from an assumed height distribution of asperities, the load and 
contact area of the individual asperities as functions of x. The dependence 
of the total true contact area on the total load is obtained by summing 
these individual loads and contact area and then eliminating x. 
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For neither Lodge and Howell's nor Archard's model does the curvature 
of the asperities affect the load dependence of true contact area, provided 
that there is no correlation of asperity curvature with position on the sur- 
face or with asperity height. Both models predict the true contact area 
to depend on a power of the load. 

General expressions for the index n of the relation F = awn given by the 
two theories are given in Table I for hemispherical bodies against flat sur- 
faces. The effect of a possible dependence of the shear strength of an 
element of the true contact area on the normal pressure on that element is 
included. It has been assumed that the asperities deform with load accord- 
ing to the relation A' = B'W"' where m' could differ from the value m for 
a specimen. The expression based on Archard's theory was calculated by 
the writer and is in close agreement with the particular values given by 
Archard. 

TABLE I 
Theoretical Values of the Friction Index nu 

~ 

n (Lodge and Howell) n (Archard) 

Rough hemisphere on plane m + (1 - m ) b '  4- h(1 - m')l 

Smooth hemisphere on plane m + h( 1 - m )  - 
a Here m and m' are the indices of the area/load relations A = bW"' and A' = @W"' 

which refer, respectively, to the specimen and asperity deformations, h is the index of the 
specific friction/pressure relation ST = Soph, g is the index of the asperity frequency/ 
height relation N = N&" 

From Table I we see that, since m is less than unity and the lowest physi- 
cally plausible values of h and g are 5x0, the lowest values of n will be 
obtained when h and g are both zero. Table I1 gives these values of n 
when m and m' are equal and take the values (the value for a Hookean 
body) and 0.708 (the value obtained for the nylon specimens). 

TABLE I1 
Minimum Theoretical Values of the Friction Index n 

n (Lodge 
m and m' and Howell) n (Archard) 

~~ 

Rough hemisphere "3 0 89 0.86 
on plane 0 708 0.91 088 

We see that, for a hemispherical specimen, both theories give very similar 
values of n, showing the insensitivity of n to the detailed assumption. 
The assumptions do, however, determine which of the theories is appro- 
priate .in given experimental conditions. Archard's assumption of a rigid 
substrate requires that the approach of a specimen to the plane on which 
it rubs is less than the height of the highest asperity, but Lodge and Howell's 
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neglect of asperity height variations requires that the approach is large 
compared with this variation. Now, in the measurements on nylon 
specimens the approach ranged from 0.07 p to 13 p and the height varia- 
tions of the surfaces were no greater than X/20 or 0.027 p ,  as was shown 
by the interference fringes. Lodge and Howell's theory is therefore the 
more appropriate for these specimens and loads. 

The dverage experimental value of n for the nylon specimens, 0.781 
lies between the lowest theoretical value for a rough hemisphere, ca. 0.90, 
and the theoretical value for a smooth hemisphere which equals m, 0.708 
if h is zero. The obvious interpretation of this is that the surfaces of the 
specimens were effectively smooth, under the experimental conditions used, 
but that h has the value required to make n equal to 0.781. Before this 
is accepted we must exclude the alternative possibility that the other as- 
sumptions of Lodge and Howell's treatment can be altered sufficiently to 
account for the observed values of n. 

2.1. Modifications of the Lodge and Howell Theory to Explain the 
Experimental Value of n 

The assumption which has the most significant effect on the theoretical 
values of n is the assumed dependence of the contact area of an asperity on 
the load it bears. This may be more readily seen if we introduce the pa- 
rameters S, the average tangential traction on the apparent. contact area, 
and P, the average pressure on this area. Assuming that F = awn 
and A = BW" for the macroscopic properties of a specimen, we obtain for 
the relation between Sand P: 

S = 4- Kl-m)/(1 -dlp(n-m)/(l-m) (1) 

where S = F/A and P = W / A .  
Now, from the value for n according to M g e  and Howell's theory (see 

Table I), the index of P, (n - m)/(l -,'m), equals m' + h(1 - m'). 
So, if h is zero, then S a P"' where m' is the deformation index of an as- 
perity. Experimentally we find n = 0.781 and m = 0.7076 whence s 
Q: P.Z6, so that if ST is independent of pressure, i.e., if h = 0, we require 
m' = 0.25. This is much less than the deformation index observed for 
the macroscopic specimens and then the value 2/3 predicted for hemi- 
spherical Hookean asperities. The possibility that this is a consequence of 
a Merent asperity shape or of the large deformations experienced by the 
asperities within the contact area is considered below. 

2.1 1. Large Deformations 

The deformation of an elastic hemisphere pressed against a rigid plane is 
adequately described by the ratio of a, the contact radius, to R ,  the radius 
of curvature of the hemisphere. If the asperities within the contact area 
are aasumed to be close-packed hemispheres and to have the elastic prop- 
erties of the bulk material, it can be shown that the ratio a /R  for them is 
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GO.2 under the loade used in the present experiments. Demonstrations 
that the deformation index m remains unchanged when a / R  increases to 
values greater than 0.2 are given by several model experiments. Schal- 
lamsch7 (using rubber spheres) found that m was still "8 although a / R  
increased to 0.8, and Pascoe and Tabol.8 (indenting plane nylon surfaces 
with steel balls) found m = 0.74 for a / R  of 0.1-1.0. In the preceding paper 
it was found (for nylon hemispheres) thsht m = 0.71 for a/R of 0.006- 
0.1. 

If the asperities were more widely spaced the number of asperities sup- 
porting the load would be fewer, and slightly higher values of a / R  would be 
produced. However, this would involve a reduction in the ratio of true to 
apparent contact area, which is already improbably small. The observed 
tangential traction on the apparent contact area which reached 2 kg. 
m m . 2  implies, even with close packing and a / R  = 0.2, a value of 22 kg./ 
mm.2 for ST which is greatly in excess of the published estimates of the 
bulk shear strength of nylon: e.g., 1.5 kg./mm.2 of Pascoe and TaboF 
and 6 kg./mm.* of Shooter and Tabor.9 This indicates a further criterion 
that asperity models must satisfy. 

2.12. Asperity Shape 
If the profile of a rotationally symmetric asperity is y a lxkl, then, as k 

takes increasing positive integral values, we obtain asperities which are 
conical, paraboloidal (approximating near the origin to the surface of a 
sphere), and so on. 

Experiments by the author on rubber cones pressed against a glass sur- 
face showed that for k = 1, m also is 1. It has been shown theoretically 
by Lovelo and experimentally by Sabey" that m is 1 when a rigid cone in- 
dents a plane surface of an elastic body. It follows from this result that 
an elastic body whose asperities are conical will obey Amontons' laws when 
sliding on a smooth rigid plane. 

For a paraboloidal (or hemispherical) Hookean asperity we have, of 
course, m = as was shown theoretically by Hertz. l2 Experimental con- 
firmation has been provided by, for example, Schallamach who used rubber 
balls. 

A theoretical solution valid for any even integral value of k has been 
given by Steuermann.13 He showed that m is then 2 / ( k  + 1) so that the 
asperity profile would have to be y 0: x8 if m, the asperity's deformation 
index, were to be near 0.25. If the n - m difference were to be explained 
in terms of asperities of this profile, their deformation index of 0.25 would 
have to persist up to the highest pressures which occurred at the contacts, 
i.e., -6.5 kg./mm.2, and this would require that the ratio of height to 
diameter of the asperities be > l / ~  (as can be shown from Steuermann's). 

If the asperity heights are no greater than 0.027 p, as the interference 
fringes suggest, then the asperity diameters must be < 1 p. There does not 
appear to be any method by which the shape of asperities of such small 
dimensions could be measured, so that to postulate their presence on the 
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specimens, although it would provide a formal interpretation of the n - m 
difference, offers at present no prospect of experimental test and should 
only be done as a last resort. 

We conclude that the experimental value of n - m cannot be interpreted 
by the Lodge and Howell t.heory (except with the unverifiable assumption 
just discussed) if ST is independent of pressure and the asperities obey the 
same deformation law at all pressures. 

3. THEORY OF TRANSITION FROM ROUGH TO SMOOTH 
SURFACE 

Because the experimental value of n lies between those obtained theo- 
retically (when ST is independent of pressure) for rough and smooth sur- 
faces, it would seem reasonable to expect such a value if some of the as- 
perities within the apparent contact area were completely flattened and 
the others were not. Analysis shows, however, not an intermediate value 
of n,-but (as we will show first for a special model and then more generally) 
the surprising consequence that the dependence of friction on load up to a 
critical load is the one for a rough specimen and at  greater loads is the one 
for a smooth specimen. 

An advantage of this model is that it can lead to a greater ratio of true 
to apparent contact area and hence could require a smaller value of ST 
than a model in which asperities were not completely flattened, thus meet- 
ing the objection raised in $2.11. However, we shall see that it does not 
enable the experimental value of n to be interpreted without the assump 
tion of a pressure dependence of ST. 

For concreteness we will discuss first the contact between a rigid plane 
and a hemispherical Hookean specimen which is covered with identical 
asperities in the form of spherical caps arranged in a square lattice of side 
equal to the asperity diameter (see Fig. 1). 

It can be readily shown using (under extreme conditions) Hertz’s 
equation for contact radius [eq. (1) of the preceding paper] that the pres- 
sure pol averaged over the square of the lattice, at which one of these asperi- 
ties will be completely flattened (i.e., at which ad = C )  is given by 

Geometrically, C/RA, which is the ratio of base radius to radius of curvature 
of an asperity, equals sin el where e is the maximum inclination of the 
surface of an asperity to the envelope of the specimen’s surface. The 
ratio C/Ra  was used as a roughness parameter in Rubenstein’s theory4 
where under small deformations it affected the coefficient a of the friction 
equation F = awn. Eq. (2) shows the importance of this ratio in deter- 
mining the pressure at  which a surface, whose roughness is specified in this 
way, becomes effectively smooth. 

If the load W on the specimen is continuously increased from zero, a load 
Wo will be reached at which the pressure at  the center of the apparent con- 
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tact area (which is the greatest pressure) will reach the value po required 
to flatten an asperity. For loads greater than Wo the pressure at the center 
will exceed po and there will be a region of complete true contact bounded 
by the circle at which the pressure equals PO. This circle will grow with 
further increase of load. 

Now, it is shown in Appendix I that the area of the annulus between this 
circle and the boundary of tfie apparent contact area is independent of the 
value of the load, provided, of course, that the load exceeds Wo. This im- 
plies that the increase of apparent contact area with load beyond WO 
is entirely accounted for by the increase of true contact area in the central 
zone. Furthermore, it is also shown in Appendix I that within this an- 
nulus the apparent contact area subjected to pressures in the range p to 

Fig. 1. Model of surface roughness. 

p + Sp (where p is any value between zero and po) is also independent of 
the load, so that the contribution to the total friction by this annulus is 
independent of the load. The increase of friction observed as the load in- 
creases from Wo must, therefore, be entirely accounted for by the friction of 
the central zone of true contact. 

In the load range below Wo, i.e, when no asperities are completely flat- 
tened, the dependence of friction on load will be that predicted for rough 
surfaces by the theory of Lodge and Howell3 (see SZ), which is that F 
is proportional to W”/’ when the shear strength of the true contact area is 
assumed constant. At loads greater than Wo, in view of the conclusion of 
the preceding paragraph, we may express the friction as follows: 
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where F and A ,  Fo and Ao, are the friction and apparent contact areas a t  
loads W (greater than WO) and %, respectively, and ST is the specific shear 
strength of the true contact area. 

Alternatively, expressing the areas in terms of the corresponding loads 
from the equation A = @W'/', we have: 

F = Fo + S&p(W:" - Wo"') 

On writing this equation in the form 

F + A = S&Wv'/' 

where A = STAO - Fo 

(4) 

we see that when F is much greater than A, F approaches equality with 
ST@W"'. Now, it follows from eq. (6) that A is the shear strength of an 
area equal to the difference between the apparent and the true contact 
areas produced by the load WO. For the special model considered here this 
difference can be shown to be (1 - 31r/16)&, i.e., 0.41 Ao, from which we 
derive A = o.7F0. Consequently, if F exceeds 1OA (i.e., 7F0),  which occurs 
when W exceeds 8.5W0, deviations of F from ST@W'/' are less than 10%. 

The transition from a rough surface to a smooth surface with increasing 
load does not, therefore, for this model lead to a value of n intermediate 
between those for rough and smooth surfaces, but to a change of n from the 
former to the latter over a restricted load range commencing at  the critical 
load at  which asperities a t  the center of the contact are completely flat- 
tened. 

This result is not peculiar to the assumed model, since its essential re- 
quirements are the existence of a critical pressure a t  which the asperities 
will flatten completely and the constancy of the annulus of apparent con- 
tact area subject to pressures less than this. The first requirement 
would be satisfied even if there were asperities of different shapes and sizes 
on the specimen surface, provided that elements of the surface which are 
small compared with the apparent contact area contain similar assort- 
ments of asperities. The second requirement is shown in Appendix I 
to be true for a Hookean material and also for a material which deforms 
according to the equation A = BW" when m # 2/3. 

We conclude that a relationship P = awn with a value of n between those 
predicted for rough and smooth surfaces, and which extends over a large 
load range, cannot be accounted for if we retain the assumption that the 
specific shear strength of the true contact area is independent of pres- 
sure. 

3.1. Pressure-Dependent Shear Strength 
The consequences of the assumption of a dependence of specific friction 

ST of an element of true contact area on the pressure P on that element, 
which is of the form ST = Soph where So and h are constant, and a general 
value of m, in the special model discussed above, are as follows: 
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When W is less than Wu, so that no asperities are completely fhttened, 
the themetid value of n will be that given by the theory of Lodge and 
Howellla ie.: 

n = m + (1 - m)[m' + h(1 - m')] (7) 

where m and m' refer to the specimen and asperity deformation, respec- 
tively. 

When W exceeds Wo the equations, analogous to eqs. (3) and (4), that 
we obtain are (see Appendix 11) 

F = FO + (m/n)So[A(p,,,br.)h - Ao(po)*I (8) 
F = Fo + [ (t@)('-*)So/t7] [W" - Won] (9) 

where n = h(1 - m) + m (10) 

F + A = (mB)('-h)SoW/n (11) 
where A = [(@)('-h)/n]SoWon - Fo (12) 

and 

Writing as before in eq. (5) )  

we see that, when F is much greater than Al F and Ware related by a power 
law with index n which exceeds m if h is positive. 

4. COMPARISON WITH EXPERIMENT 

The experimentally observed variation of F with W (see Fig. 9 of the 
preceding paper) can be very closely represented by eq. (11) if we assume 
that the critiad load Wo was near the lowest load used and that h had the 
value 0.25 which is obtained by substituting the experimental values of n 
and rn {k1 0.781 and 0.708) in eq. (10). The critical load Wo can be crudely 
estimated from the departures from the obaerved friction which the power 
law shows when extrapolated to low loads. The estimates of WO for the 
fifteen specimens used in the measurements described in 54 of the preced- 
ing paper ranged from <<0.7 to about 1 g., tending to be greater for speci- 
mens of greater radius. From Wu, using eq. (Al)(Appendix I) and eq. (2) 
and the observed contact area, we can further deduce the critical pressure 
po and the ratio C/R',  i.e., the base radius to radius of curvature ratio for 
an asperity on the special model discussed in 53 and obtain values of about 
0.7 kg./mm.* for PO and 0.015 for C/R'.  

Examination of the interference fringes between a specimen and the 
glass plate, especially the boundary of the zero-order fringe at  low loads 
where the mutual inclination of the surfaces is least and the phase disper- 
sion is greatest, showed that the height variations of the specimens were 
5 h/20, i.e., 50.027 p ,  but gave no clear indication of the lateral dimension 
of the asperities. If the asperity heights were as great as 0.027 p and 
C/RA were 0.015, the asperity diameter would be 7 p. 

The asperities on polished steel observed by Haine and Hirst,14 using 
reflection electron microscopy, had maximum slopes and diameters similar 
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to this, and one speculates whether the asperities on the polished steel balls 
are reproduced on the nylon specimens via the intermediate molds indented 
by the balls. Fidelity of reproduction of this sort can be shown by a single- 
stage replication with the use of polymethyl methacrylate and polystyrene, 
as Tolansky16 has demonstrated. 

In  some measurements, preliminary to those described in the preceding 
paper, values of n of about unity were obtained for loads up to 20 g., the 
greatest that could then be used. The specimens used in these experi- 
ments were also of nylon 610, but the silver molds in which they were 
prepared were not gold-plated. The tangential tractions that were ob- 
served varied considerably up to a maximum of 0.8 kg./mm.2 It was in 
an attempt to reduce this scatter that the gold plating of the molds was 
introduced, in the belief that the more thorough cleaning processes that 
could then be used would result in greater reproducibility of the speci- 
mens. It now seems likely that tarnishing of the silver molds and, pos- 
sibly, attack by the aqueous phenol used in cleaning them caused the speci- 
mens produced in the silver molds to have asperities which were not com- 
pletely flattened under the greatest pressures employed. This would be 
consistent with the low tangential tractions that were observed. The 
observed value of unity for n in these experiments is also similar to the 
theoretical value based on the special model which, when W is less than 
Wo, gives n = 0.94 on substituting m' = m = 0.708 and h = 0.25 in eq. 

C o h a t i o n  of the significance of the asperity flattening pressure in 
determining the load at  which the friction index n changes from that for 
a rough surface to that for a smooth one may be inferred from some pub- 
lished measurements by Archard.6 Archard measured the friction F 
as a function of load W of crossed cylinders of Perspex (diameter 6.35 mm,) 
whose surfaces had been finished by turning. The pitch of the turning 
marks was 77 p and their peak-to-peak height was 5-10 p .  At loads up to 
about 10 kg., F was proportional to W1.O, but a t  greater loads F was pro- 
portional to WO.'l. For highly polished Perspex cylindera of the same 
diameter, F was proportional to Woe7' for loads of 1-100 kg., and throughout 
this load range A varied as W0-7*. At a load of 10 kg. the apparent con- 
tact area was about 0.8 11ll11.~. 

Now, if we assume that the turning marks are parts of cylinders, their 
contacts, when the axes of the cylinders are perpendicular, will be equivalent 
to the contacts of spherical caps with C / R  between 0.26 and 0.52 and the 
plane surface of a material of similar modulus. It can be shown that 
complete contact between this pair of surfaces will occur when the pres- 
sure reaches a value between 8 and 16 kg./mm.2. These pressures are half 
those required to flatten simiiar spherical caps against a rigid plane, which 
is the circumstance for which eq. (8) was derived. (A value of 180 kg./ 
mm.2, which was obtained from the quoted deformation of the Perspex 
cylinders, was taken for E / (  1 - a2) .) 

(7) * 
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In Archard's experiments the transition in the index n occurred when 
W = 10 kg. and A = 0.8 mm.2. The central pressure was, therefore, 

Peenter = (l/m)(W/A), i.e., (1/0.71)(10/0.8), i.e., 17 kg./mm.2 

The transition therefore occurred when the central pressure was sufficient 
to ensure complete contact between the two cylinders. 

5. GENERAL DISCUSSION 

We have seen that the observed variation of friction with load for the 
nylon specimens can be satisfactorily represented by the assumption that 
the asperities on the specimens are completely flattened at pressures 
of about 0.7 kgJmm.2, if we additionally assume for elements of true con- 
tact area a dependence of specific friction ST on pressure p of the form 
ST = Soph where h = 0.25. The large range of loads, over which the rela- 
tion F = aW" holds with constant value of n, implies that no appreciable 
number of asperities exist which have critical pressures for complete flat- 
tening in the range that the central pressure takes for these loads, i.e., 
0.6-6.5 kg./mm.2. If there were lesser asperities that were never com- 
pletely flattened and they deformed in a similar way to the specimens, then 
the arguments of 52.1 show that they could not lead to values of h less 
than m (i.e., 0.708). Therefore, we must assume that such asperities do 
not exist. 

It seems likely, therefore, that the observed increase in specific friction 
with pressure requires, not a geometrical, but a molecular explanation, such 
as is required to explain the increase in bulk shear strength and in viscosity 
with pressure which is observed by Bridgman.16 (The power-law relation- 
ship by whjch the specific friction dependence on pressure has been repre- 
sented is not necessarily the physically correct one, for other relationships 
would probably be indistinguishable over the pressure range employed.) 
On a molecular model, such as that assumed by Rartenev'' to interpret 
the velocity dependence of friction, the effect of a pressure increase could 
be to increase the potential barrier that must be surmounted by the 
molecular jumps. 

The difference n - m observed by Archarde at  loads greater than Wo 
was 0.05 f 0.022 and is of low statistical significance, so that it does not 
provide reliable evidence of the dependence of specific friction on pressure. 
It is, however, nearer to the value observed here for nylon 610 (via., 0.073 
f 0.0125) than it is to zero, and it would be consistent with the value of 
the index h, 0.25, found for nylon. 

Some measurements made by Kraghelsky and Sabelnikov,lB also on 
polymethyl methacrylate, show a strong dependence of specific friction on 
pressure. These authors used an optical method to measure the contact 
area between two roughened flat polymer surfaces (asperity heights up to 
60 p )  for a 20-1 range of loads, and simultaneously measured the friction. 
They observed the mean specific friction to increase from 1.76 kg./mm.2 
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at a mean pressure of 2.2 kgJmm.2, to 4.86 kg./rmx2 at a mean pressure of 
8.7 kg./mm.S. Expressed as a power-law relation 3 = S(P)h, this gives 
h -0.7, which is much greater than Archard’s measurements would sug- 
gest. It is not clear, however, whether the contact area measured waa the 
true or the apparent contact area. If it were the second and the gross 
asperities on the surfaces were themselves rough, i.e., covered by lesser 
asperities of, say, hemispherica1 shape, the observed value of h could be 
obtained even though the shear strength of the true contact area were 
independent of pressure. Interpretation is further complicated by the 
likelihood of interlocking of asperities on the two rubbing surfaces, since 
both were rough. 

6. CONCLUSIONS 
The load dependence of the friction of nylon 610 on glass, reported in the 

preceding paper, has been interpreted in terms of the adhesion theory of 
friction with the addition assumption that the shear strength ST of the true 
contact area between nylon and glasa increases slowly with pressure. In 
view of the interspecimen variability of friction, which probably indicates 
differences between the contaminating films on the rubbing surfaces, it 
is astonishing that such a simple interpretation should be possibb. One 
is driven to conclude that the surface contamination was, a t  least to a first 
approximation, an independent variable just as speed and load were found 
to be. 

In  the light of the discussion of, and the extension to, the asperity theories 
of friction which have been given, it is possible to give the following de- 
scription of the load dependence of friction, for elastic bodies, over a very 
wide range of loads. 

At loads smaller than a critical load Wo, which cause0 complep flattening 
of the central asperities, the theories of Lodge and Howell and of Archard 
are appropriate. Under the lowest loads, where the approach of the rub- 
bing bodies is small compared with the variation of asperity heights, 
Archard’s treatment is applicable. When the approach becomes greater 
than the asperity height variation and the deformation of the substrate 
must be considered, we enter the range of applicability of Lodge and 
Howell’s treatment. Both these theories predict values of n approaching 
unity and the effect of a pressure dependence of Sr makes the difference of 
?a from unity even smaller. 

At loads considerably greater than WO the rubbing surface is effectively 
smooth and the value of n is similar to that of the deformation index m, 
but exceeds it by an amount depending on the pressure dependence of ST, 

Estimates of Wo can be made from feaslible roughness measuremenb- 
for example, of the maximum inohation of the surface to its envelope- 
and can enable the effectively rough or smooth behavior of a surface under 
given conditions to be predicted. 

A pressure dependence of the shear strength of the true contact area 
would be expected to infIuence the ocourrence of abrasion when a polymer 
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specimen slides on a smooth surface, for the following reasons. If the shear 
strength of the polymer is constant (or increases less rapidly with pressure 
than does the shear strength of the true contact area), it is conceivable 
that, under the high pressures which can exist at an asperity contact, 
the friction could be sufficiently great to detach fragments from the as- 
perity without any permanent junction between the fragments and the 
mating surface. The presence of the fragments between the bodies would 
make the pressure distribution more irregular and could lead to the forma- 
tion of more fragments. 

Now, the pressures at the asperity contacts, even when the asperities 
are completely flattened, may be considerably greater than the average 
pressure on the apparent contact area if the asperities initially had large 
slopes. It would therefore seem valuable to correlate the average pressures 
at which abrasion commences for various surface textures of a polymer with, 
say, the maximum slopes of their asperities. 

Rayon Research Aseociation. 
This work forms part of a program of fundamental research undertaken by the British 

Appendix I 

The pressure pmax at the center of the contact of radius a between a 
Hookean sphere of radius R and a rigid plane produced by the application 
of a load W is (from Hertz12) given by: 

pmax = 3/2W/~a2 ( A l )  

and the pressure a t  radius r (r < a) from the center of the contact is given 
by : 

p ,  = pmm(1 - r2/a2)*/' (A2) 

a1m12 a = [3/~zw(1 - ~ / E I ' / '  (A4) 

p ,  = ( 2 / ? r ~ )  [ E / ( I  - ."](a2 - r2)'/' (A51 

M p ,  =>3,/,(w/?raz) ( 1  - r~//a2)'" (A3) 

Eliminating W between equations (A3) and (A4) gives: 

Now, the part of the contact subject to a pressure less than p ,  is the an- 
nulus of area *(a4 - r2) since the pressure decreases continuously from the 
center of the contact to the edge. 

If we now consider the effect of increaaing W whilst keeping p ,  constant 
by suitably changing r we see from eq. (A5) that the area of this annulus 
will remain constant, for it depends only on the value of p ,  and the radius 
and elastic constants of the sphere. Because this result is true for any 
value of pr less than pma, it will be true when p ,  equals the critical pressure 
PO (see 56) if pressures greater than this exist in the contact. Also, because 
this result is true for each of any pair of values of p ,  (say, p and p + 
6 p ) ,  the area of the annulus subject to pressures between p and p + 6 p  
will be independent of W.  
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These conclusions will also be valid when the sphere is non-Hookean, 
i.e., when m in the equation A = j3W" is not equal'to 2/3, if we write, in 
place of eq. (A2) above, 

p ,  = pmax(l - rz/az)(' - m)/m (A61 

whence pmax = W/mra2 (A71 
(Compare, for example, Equation 7 in Lodge and Howel1.a) 
replace eq. (A4) by: 

If we also 

a = [(,/,)mWR2(1-q/' (A8) 
which follows from eq. (7) of the previous paper, the index of W in that 
equation, 2/(2 + x), being equal to m. Hence we obtain: 

(A91 - (1 lm) - m) /"R - 2( 1 - m)/mK - I/m (az  - rz)( l - -m)/m 
r -  

The deductions from eq. (A5) may similarly be made from eq. (A9). 

Appendix II 
We have shown in $3 and Appendix I that the contribution to the total 

friction made by the annulus of incomplete contact which borders the 
central area of complete contact is independent of the load W if W > Wo.  
This remains true even though the specific friction is pressuredependent. 
We may, therefore, write for the total friction in this case: 

F = Fo + &'O S(p)2m dr (W > WO) 
where S(p) is the specific friction under the pressure p existing at radius 
r from the contact center, ro is the radius at  which the pressure equals 
po (the pressure at which asperities are just completely flattened), and FO 
is the total friction when ro is zero (which is when W = WO) and is the con- 
tribution by the annulus of incomplete contact akhigher loads. 

Now, from eqs. (A6) and (A7), remembering that nu2 = A = BW" 
we have : 

p = (W1-m/mj3)(1 - ~ / a * ) ' - ~ / ~  

(No appreciable error is introduced by neglecting, as we do here, the small-scale vari- 
ations of pressure which occur in a region where asperities have been completely flat- 
tened, provided that the central region of complete contact is large compared with the 
area of an asperity. I 

Then, if we assume that S(p)  = Sop' we have : 

= F~ + (W1-"/mj3)'~~[rn?ra~/(h(l - m) + m)l 
F = Fo + So A" [(W1-"/mj3)(1 - r2/az)1-mm/m 1 ' 2n-rdr 

{ 1 - (1 - ro2/a2)[h(l  - m) + m ] / m )  (A10) 
Now, by definition, p(ro)  = po and (pma,)w=w, = PO, therefore: 

  ma) (1 - roZ/az)' -m/m = (W: -"/ma> 
i.e., 1 - ro2/u2 = ( W O / W ) ~  
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Remembering again that ra2 = /3Wm and introducing the parameter n = 
h(l  - m) + m, eq. (A10) becomes: 

F = Fo + (mS)'-hSo(W - Won) (All)  

(A121 

Otherwise, since p,, = W'-m/mi3 and PO = Wo'-"l/mS, 
F = Fo + m/~&o[A(pm,)~ - Aopo h I 
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synopsis 
It was concluded in the preceding paper that there wm a significant difference between 

the indices nL and n in the expression A = pW" and F = aW by which the contact area 
A and the friction F were found to be related to the load W when nylon 610 slid on glass. 
A discussion of published adhesion theories of the friction of elastic bodies shows that the 
difference n - m is too small to  be attributed to roughness of the nylon surface. I t  is 
concluded that under the contact pressures used the nylon surface waa effectively smooth 
and that the friction of a unit area of "true" (i.e., molecular) contwt between nylon and 
glass increased with pressure P as about A theoretical treatment is given of the 
dependence of friction on load for a rough-surfaced elastic body which covera the load 
range in which the surface asperities become completely flattened. It is shown that 
from measurements of the elastic properties of the body and feasible measurements of 
its surface texture one can estimate the load at which the dependence of friction on load 
changes from that for a rough to that for a smooth surface. Comparison with a pub- 
lished experiment is satisfactory. 

R6UIIlB 

Dana l'article prdctklent, on a conclu qu'il y avait une diffbrence considbrable entre lea 
indices m et n dam l'expression A = Bw" et F = awn oh la r6gion de contact A et la 
friction F semblent &re relidea A la charge W quand le nylon 6.10 gliese mr du verre. 
Une discuseion dea thhries d'adhhion public% mr la friction de corps dlastiquea montre 
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que la difference (n - m) eat trop petite pour &re attribuk B la rugosit4 de la surface du 
nylon. On en conclut dbs lom que la surface du nylon etait effectivement peu rugeuse 
sous lea preasiona de contact employQs et que la friction d’une region d’unit4 de contact 
rQ1 (0.B.d.’ molBculaire) entre le nylon et le verre augmentait en fonction de la pression 
P 8. la puissance I/d environ. On donne un traitement thkrique de la dBpendance de la 
friction de la charge pour une substance Blaatique avec une surface brute qui couvre 
le domaine de charge dam lequel les aspBrit& de la surface s’applattissent complbte- 
ment. On montre qu’B partir de mesure8 dea propri6tba d’6lasticit4 du corps et de 
mesurea possibles de sa texture de surface, on peut Bvaluer la charge pour laquelle la 
dependance de la fraction aux changementa de charge varie de la valeur pour une surface 
brute B la valeur pour une surface lisse. La comparaison avec des experiences publibs 
est satisfaisante. 

Zusammenfassung 
In der vorhergehenden Arbeit wurde ein charakteristischer Untemchied zwischen den 

Exponenten m und n im Ausdruck A = i3w“ und F = aW” fi ir  die Beziehung der Kont- 
aktflache A und der Reibung F zur Belaatung W beim Gleiten von Nylon-610 auf Glaa 
gefunden. Eine Diskuasion der bekannten Adhikionatheorien der Reibung elaatiecher 
Korper zeigt, dass die Differenz (n - rn) zu klein ist, um der Rauhigkeit der Nylono- 
berflache zugeachrieben zu werden. Es wird daher angenommen, dass bei dem ange- 
wendeten Kontaktdruck die Nylonoberfliiche effektiv glatt war und die Reibung der 
Fliicheneinheit “wahren” (d.h., molekularen) Kontaktes zwischen Nylon und Glaa mit 
dem Druck P etwa nach P’Ir anstieg. Eine theoretische Behandlung der Abhangigkeit 
der Reibung von der Belastung fiir  einen elaatischen K6rper mit rauher Oberflache wird 
f i i r  den Belaatungsbereich, in welchem die Oberflachenrauhigkeiten vollig geglattet 
werden, gegeben. Aus Messungen der elaatischen Eigenschaften dea Korpera und durch- 
fiihrbaren Measungen seiner Oberflachentextur kann man die Belastung bestimmen, bei 
welcher die Abhhgigkeit der Reibung von der Belaatung von einer solchen fur eine 
rauhe xu der fiir eine glatte OberflBche giiltigen ubergeht. Der Vergleich mit einem 
veroffentlichten Versuch iet befriedigend. 
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